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On the validity of the Kelvin equation 
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Abstract. The Kelvin equation for the equilibrium vapour pressure outside a drop of liquid 
is widely quoted but its derivation is subject to three assumptions which are not obviously 
justified. Consequently some doubt has recently been thrown on the value of the equation 
for estimating the true vapour pressure. It is shown in general, and explicitly and in detail 
for a Lennard-Jones fluid, that the equation is valid to a few per cent even for temperatures 
approaching the critical temperature and for microscopic drops insofar as homogeneous 
thermodynamics is valid. It is noted that the spinoidal radius of a drop is numerically equal 
to the surface thickness for a Lennard-Jones fluid. This relation may well be general and 
useful. 

1. Introduction 

For a spherical liquid-vapour surface with radius of curvature R the difference of 
pressure Ap between the two regions is given by the Laplace equation (see Rowlinson 
and Widom 1982 p 21, ref I O )  

A p = 2 y / R .  (1.1) 

This is a fundamental equation in the thermodynamics of surfaces and is virtually a 
definition of the surface tension y. 

If we have a drop of liquid in equilibrium with its vapour it is useful and common 
to derive another equation, which is usually, but not invariably, called the Kelvin 
equation (Thomson 1871, see Rowlinson and Widom 1982, p 48, ref 26) 

pi is the number density of the liquid well inside the drop, pv is the vapour pressure, 
i.e. outside a plane surface ( R  + OO), and PKK is the Kelvin pressure well outside a 
drop of radius R in the Kelvin approximation, i.e. as defined by (1.2). 

Since the Kelvin equation, (1.21, involves several approximations (see 9 2) we 
distinguish this approximate value PKK from the exact thermodynamic value of the 
pressure outside the drop, which we shall call pK. This paper is mainly concerned 
with the difference between P K K  and pK. 

The Kelvin equation can be derived in a number of ways and  several approximations 
are introduced in various ways, for example, see Guggenheim (1949), Becker (1967), 
Rowlinson and Widom (1982) and  Adkins (1983). The equation is useful and  important. 
Its most familiar general use is in noting that, since a large drop  in equilibrium has a 
smaller Kelvin pressure pK than a smaller drop, in a mixture of drops, the larger drops 
grow at the expense of the smaller ones. Indeed this is a simple explanation of why 
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a supersaturated vapour condenses, i f  it can, to a bulk liquid in equilibrium with its 
vapour and that drops are scavenged from the vapour by the bulk liquid, if one is 
present. It is of rather general interest, therefore, to consider the validity of such a 
widely used formula. This was briefly discussed earlier by Melrose (1966) for liquid 
argon at its boiling point. 

The matter is also of interest because the Kelvin formula has recently been tested 
in connection with the simulation of microscopic liquid drops, R / a  2- 10, in equili- 
brium with their own vapour (Powles er a1 1983a, Thompson et a1 1984). For very 
small drops, of course, the validity of the use of thermodynamics for very 
inhomogeneous systems arises. In particular the possible curvature dependence of 
surface tension and the precise meaning of the 'radius' of the drop (Tolman 1948) 
require consideration; for a detailed discussion see Rowlinson and Widom (1982) and  
Henderson (1985). These matters can only be resolved by generalised thermodynmics 
or  statistical mechanics and remain somewhat controversial. However, as far as the 
Kelvin equation is concerned, some authors have cast doubt on its validity (Thompson 
et a1 1984, Henderson 1985), not only because of the curvature effect on y and on the 
precise meaning of R, but also because of the above-mentioned approximations in the 
thermodynamic derivation. The latter problem, at least, can be dealt with very simply 
and we d o  that in this paper. We show that the approximations made are much less 
important, even at high temperatures, than might be supposed. 

2. The Kelvin equation 

The most elegant way of obtaining the Kelvin equation is given by Rowlinson and 
Widom (1982 p 42). They point out that (we retain their notation for the moment) 
the chemical potential is the same both inside ( a )  and outside ( p )  the drops (indeed 
everywhere) whether it has a finite radius R or  an infinite radius (i.e. the plane surface) 
so that 

(2.1) p g = p {  and p Z = p U r .  U 

CL;; -PE= ppR -CL&.  (2.2) 

Hence 

However, d p  = p d p  + s d T  and  so at constant T we have 

Thus integrating gives 

Now P$= & = p V ,  the usual vapour pressure; p p  is what we call pK and using ( l . l ) ,  
p :  = 2 y / R  +pK.  Writing p a  = pl (p)  and p p  = p,(p) gives 

( 2 . 5 )  
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If ( 1 )  the liquid is incompressible at pr ,  the coexistence value, and  ( 2 )  the vapour 
is a perfect gas we find from (2 .5)  that 

If ( 3 )  2 y / R  >>pK-pvr  then we obtain the Kelvin equation (1 .2) ,  giving the estimate 
P K K  of pK and involving the three assumptions ( l ) ,  ( 2 )  and ( 3 ) .  

At low temperatures, near the triple point, the liquid is not very compressible and  
the vapour has a low density and so is near perfect. Also assumption ( 3 )  is quite good 
as we shall show shortly. However, as the temperature increases the isothermal 
compressibilty x increases (it diverges at the critical point). The vapour pressure, and 
more so the Kelvin pressure, increase rapidly (Arrhenius) so that vapour rapidly becomes 
very imperfect. These facts are illustrated in table 1 for a 'Lennard-Jones' fluid. It 
would appear, therefore, that the Kelvin equation would become useless at high, and 
even possibly moderate, temperatures. However, this is too simplistic a view. Consider 
the three approximations in turn. 

( 1 )  The pressure on the liquid inside the drop is ( 2 y / R  +pK)  instead of pv (as it 
is for the coexisting liquid of density P I ) .  For linear compressibility we have 

A p / p !  - x ( 2 y /  + P K - P v ) .  (2.6) 

( P K K - P ~ ) / P ~ '  ( 2 y / R ) / ( p h T ) .  (2 .7)  

A P / P r - X ( 2 Y / R ) ( l  + P v / p h T )  - x ( ~ Y / R ) ( ~  + p y / p I )  - ~ ( 2 y / R ) .  (2 .8)  
This quantity is given in table 1 and it is clear that the assumption of incompressibility 
of the liquid is good at any temperature except possibly the critical temperature. 

(2)  The vapour is manifestly inperfect as shown by the compressibility factor in 
table 1 .  However, for the Kelvin equation this is not inconsistent with the assumption 
that the gas is perfect as we now show. Consider the RHS of (2 .5)  and assume that 

But for large enough drops we have from the Kelvin equation itself 

Therefore 

p = pkT.  
Then 

(2 .9)  

RHS -= kT h(pK/pv) .  r : 
Table 1. Some properties, in reduced units, of the Lennard-Jones fluid (see $ 3). 

PI P ,  P" X P , l  P v  7- Ya X(2YI RI' P r l P ,  7- 

0.6 0.890 0.00030 0.000 17 0.054 0.94 1.56 0.017 2970 
0.8 0.799 0.0058 0.0044 0.113 0.96 1.05 0.024 138 
1.0 0.703 0.0275 0.0237 0.218 0.86 0.60 0.026 26 
1.2 0.593 0.087 0.073 0.638 0.70 0.21 0.026 6.8 
1.3 0.507 0.158 0.114 2.56 0.56 0.05 0.026 3.2 

1 - 1.35b 0.349 0.349 0.142 m 0.30 0 

a From equation (3.4) 
7-c. 

For R = 10. 
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If p K / p k  is not too large, i.e. R is large enough, then 

RHS == k T ( p K - p v ) / p v .  

But since the vapour is to be assumed perfect consistently we can again use (2.9) and 
obtain 

RHS ( P K  - P I  ) / p v .  (2.10) 

On the other hand, if pK and p v  differ little we can assume in the above integral that 
p is virtually constant (not a perfect gas!) at p\ and then 

RHS= ( P K - P v ) / P v  (2.1 1) 

which is the same as (2.10). Hence the assumption that the gas is perfect is innocuous 
at any temperature if used consistently, except for very small drops. 

(3) Consider ( 2 y / R ) / ( p K - p , ) .  Again use the approximation (2.7) to give 

( 2 y / R ) / ( p K - p v )  plkT/pv = p!/pv (2.12) 

independent of R, after using assumption (2) again. 
The ratio, p I / p v ,  is given in table 1. Clearly approximation (3) is good except very 

near *e critical point. It appears, therefore, that perhaps the Kelvin equation may be 
more acc,urate than expected. However, the above argument might be circular because 
it uses the Kelvin equation to test the Kelvin equation. In fact the conclusion is quite 
correct and we now give an  exact analysis which leads to a quantitative result and the 
same conclusion. 

3. The exact thermodynamic result for the Kelvin pressure for a typical fluid 

We can obtain the exact thermodynamic Kelvin equation if we can calculate the 
chemical potential for the fluid in any thermodynamic state and use the condition 

cL:=cLpR for T, = Tp = T. (3.1) 

We choose p K (  > p v ) ,  which fixes the size of the drop R and calculate p i .  The pressure 
in the liquid is ( 2 y / R + p K )  at temperature T. We then require that (3.1) be satisfied 
which determines y / R  for the given value of pK. 

Given the equation of state p ( p ,  7 )  we can calculate /L using the formula (Powles 
et a1 1982) 

b = ( c L  - C L , )  = P I P  - ( P / P ) " +  lp; ( P l P ' )  dP (3.2) 

where the subscript v means the value for the coexisting vapour. 

the central pair-wise interaction potential +( r )  where 
We carry out this programme explicitly for the Lennard-Jones (LJ )  fluid, i.e. for 

4 ( r )  = 4 ~ [ ( g / r ) ' ~ -  ( ~ / r ) ~ l ,  (3.3) 
where E is an energy parameter and U is a distance parameter. 

The equation of state for this fluid has been established by numerous computer 
simulations, the results of which have been conveniently conflated by Nicolas et a1 
(1979) who give p ( p ,  T )  for a wide range of T and p, including the metastable states, 
in a formula containing 33 parameters. It has been confirmed that this equation of 
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state gives a reliable value of p(p,  T )  by comparison with values obtained, quite 
independently, by the Widom (1963) method by Powles er a1 (1982) who show that 
the use of the Nicolas equation, even for metastable states, is fully justified. The 
coexistence curve, i.e. p, and p, (and p ,  and p v ) ,  for the LJ fluid has been reported by 
Powles (1984) (see table I ) .  

In the following we work entirely in reduced units, e.g. T is kT/E, p is p u 3 ,  etc. 
The computation is straightforward and we give only the results. There is, however, 
one subtlety which must be noted, namely that there is a limit to the maximum value 
of pK (or  pK) which can be chosen. The curve of p ( p )  for given T is sigmoidal as 
illustrated in figure 1. In  the density range where d p l d p  < 0 the fluid is mechanically 
unstable and  so we must have pK < p s  where p s  is the vapour ‘spinoidal’ pressure. As 
pK increases from pv the radius of the drop decreases from infinity and attains a 
minimum value R , ( T )  which we call the spinoidal drop radius. This quantity is 
discussed in 8 5 .  

Figure 1. Diagrammatic representation of the pressure of a homogeneous liquid as  a 
function of density at constant temperature.  This illustrates the various pressures and  
densities discussed in the text. 

We thus obtain the value of pK in terms of ( y / R ) .  But the value of PKK also 
contains ( y /  R )  so that pK and pKK can be compared without a knowledge of y. This 
is done in figure 2 for T = 0.8. The corresponding radius of the drop is also given (see 
below). Nevertheless, it is convenient and  physically enlightening to evaluate R and 
to this end we have used the values of y reported by Chapela et a1 (1977) by simulation 
of a plane surface. However, these values of y refer to a LJ fluid with the potential 
cut-off at r / u = 2 . 5  which significantly changes the equation of state (Powles 1984) 
and  presumably the value of y. Chapela et a1 (1977) correct for this but there remains 
some uncertainty in the precise value of y (Powles et a1 1983a). However, in the 
following we shall not incur significant error in using Chapela et al’s values of y 
adjusted to the correct value of T, just to obtain R. Their results are conveniently 
summarised by the ‘fit’ 

(3.4) 
where for the complete LJ potential T, = 1.35. The values of pK and P K K  as a function 
of I / R  at T = 0 . 8  are shown in figure 3. The difference is small but increases with 
falling radius and pKK is less than pK. 

y 2 2.24( T, - T ) ’ . 2 6  
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Figure 2. The per cent de;iation of the true pressure of the vapour pK from the Kelvin 
value pKK as a function of pK for a Lennard-Jones fluid at reduced temperature 0.8. The 
upper scale gives the corresponding radius of the drop. 

R 

0 0.1 0.2 0.3 O i  0.5 
llR 

Figure 3. A comparison of the true and Kelvin pressures as a function of reciprocal radius 
of the drop for a Lennard-Jones fluid at temperature 0.8. The bar corresponds to the 
spinoidal radius. 

The deviation of pK from P K K  is shown in figure 4, as a percentage, as a function 
of 1/R for a series of values of T from slightly below the triple point ( T ,  = 0.68, 
Hansen and  Verlet 1969) almost to the critical point. It should be noted, however, 
that the results are uncertain near T,, which is only accessible by extrapolation of 
simulation results; indeed, Adams (1979) gives T, = 1.30 rather than 1.35. 

As expected, the deviation is small at low temperatures even for very small drops. 
Melrose ( 1966) came to the same conclusion for liquid argon at T = 0.73. It is confirmed 
that it is also small even at temperatures approaching the critical temperature. For 
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Figure 4. The per cent deviation of the exact thermodynamic pressure outside a drop pK 
from that given by the Kelvin equation p K K  as a function of reciprocal radius I / R  for 
several temperatures, as indicated, for a Lennard-Jones fluid. The bars for T =  1.2 and 1.3 
correspond to the spinoidal radius (table 3 ) .  The crosses correspond to R = 2 0 .  

instance, for R > I O  the deviation is less than 5 %  for any temperature. For argon 
u = 3.40 A so that for R = 10 the drop has a radius of only 34 8, and contains only 
about 3000 atoms. The physical restriction R < R ,  is effective in preventing the deviation 
attaining large values for the higher temperatures. We conclude that the Kelvin equation 
is much more accurate than might be anticipated. 

The true density of the liquid inside the drop is not in fact increased much above 
the coexistence value as shown in table 2.  The vapour becomes very imperfect of 
course at high temperatures as already illustrated by the compressibility factor p / p T  
in table I .  The exact value of ( 2 y / R ) ( p , - p , )  is also given in table 2 and is seen to 
confirm the approximation p I / p v  given in table 1 .  

At low temperatures, where (3) is a good approximation, the approximations ( 1 )  
and ( 2 )  tend to compensate. Let us assume that the liquid inside the drop is linearly 
compressible (the isothermal compressiblity x is readily calculated from the Nicolas 
equation), i.e. 

(3.5) 

This gives quite good values of p r ( p r )  as shown in table 2.  Assume also that the 
imperfection of the vapour is given by the second virial coefficient only (for values of 

Table 2. Some parameters for the U fluid and for drops of radius I O  units. 

T PAP,  I /  PI(  P, 1 1 +X(2Y/ R +PK - P v )  (2Y/ R ) / ( P K  - P v )  -B, 

0.6 1.017 1.017 2080 12.7 
0.8 1.022 1.024 108 7.82 
I .o 1.026 1.027 22 5.32 
1.2 I .029 1.03 1 5.3 3.85 
1.3 1.034 1.039 2.0 3.32 
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B, see Barker er a1 1966), i.e. 

p / p T  = 1 + B2p.  

Then it can be shown that this approximation to pK, which we call PKA,  is given (with 
several innocuous further approximations) by 

Since x > 0 and  B2 < 0 (for our range of T )  the approximations (1) and  (2) tend to 
cancel. The effect of approximation (3) is more subtle and cannot be displayed explicitly. 
The per cent deviation of P K A  from P K K  is illustrated in table 3 for R = 10. The values 
are of the same order of magnitude as for the exact values of pK shown in figure 4. 
They even show the observed fall in deviation from T = 1.2 to T = 1.3 but this is no 
doubt accidental. 

Table 3. Comparison of the two approximations to the Kelvin pressure for the Lennard- 
Jones fluid for R = IO. Valaes of the spinoidal radius R ,  and the surface thickness D are 
also given. 

0.6 -0.3 1 .o 1.45 1.41 
0.8 I .3 1.8 2.06 2.20 
1 .o 2.5 3.9 2.89 3.4 
I .2 I .9 4.4 4.94 (6.0) 
1.3 0.7 2.8 8.33 (8.6) 

We must of course bear in mind that the thermodynamic treatment breaks down 
for very small drops if only because there is then no fluid region inside the drop  which 
can be regarded as a macroscopic liquid and the evaluation of p has to be modified, 
e.g. by density-gradient corrections (Evans 1979). Moreover, for small drops the surface 
tension depends on the curvature (Tolman 1948) and the radius of the drop is i l l  
defined if only because it is comparable with the surface thickness D (see § 4). These 
matters have also been investigated by the simulation of drops (Powles et a1 1983b, 
Thompson er a1 1984). It is found, as expected, that these effects are appreciable for 
a drop of radius a few times the surface thickness so that the deviation given in figure 
1 will depart from the thermodynamic value for R approaching, say 2 0 .  0 increases 
with T from about (+ to several times (+ ( D  is expected to diverge with the correlation 
length as T, is approached) (see table 3). It is to be expected then that the thermo- 
dynamic values of pK are only to be relied on for R > 2 0 ,  say, and  this limit is shown 
in figure 4. This limit is more severe than R > R,. 

4. The Kelvin method for y 

Powles er af (1983a) have suggested that it is possible to measure the surface tension 
y by using the Kelvin equation and simulation values of the vapour pressure outside 
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drops of varying radius. If the Kelvin equation is valid a plot of h(pK/p,) against 
1 / R  should be linear with slope 2y /p ,  T from which y can be measured. 

In  figure 5 we compare the exact value of h(pK/p,) with the Kelvin value for 
several temperatures for the LJ fluid. We see that at all temperatures the exact slope 
is larger than that for the Kelvin equation and  the discrepancy increases with increasing 
temperature. Exactly this effect was found by Powles et a1 (1983a) for a simulation 
of LJ drops at T = 0.84 except that there was a fall in h(pK/p,) for the smallest drop, 
with R = 3.5, which they attributed to a curvature dependence of y with a Tolman 
length -0.5 but which of course might also be due to the invalidity of ‘homogeneous’ 
thermodynamics. 

R 

1 IR 
Figure 5. Plots of In(p,/p,,) against 1/ R for the LJ fluid at various temperatures as indicated 
(upper curve of each pair). Also given are the Kelvin lines, i.e. In(p,,/p,) = ( Z y / p , T ) ( l / R )  
(lower straight lines of each pair). 

Thomson et a1 (1984) have also measured the vapour pressure outside a drop by 
a different method. They observe that h(pK/p,) falls below the Kelvin line. They 
suggest that one reason the Kelvin equation cannot be used is because of the three 
assumptions discussed in this paper. We can certainly remove this as a source of the 
difficulty since, as shown in figure 5,  lifting these assumptions has little effect under 
their conditions and what little effect there is raises h(pK/p,) above the Kelvin line. 

5. An empirical relation between the spinoidal radius and the surface thickness 

The surface thickness of LJ drops is reported by Powles et a1 (1983b) for three 
temperatures. Interpolated and  extrapolated values of the thickness parameter, D, are 
given in table 3. The values at the two higher temperatures are rather uncertain. These 
may be compared with the values of the spinoidal radius R,, which requires a knowledge 
of the surface tension y. 

We conclude that 

R,=  D. (5.1) 
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If this relation is generally true it is remarkable and  useful. It is remarkable because 
R, is obtained from simple macroscopic measurements, the equation of state and the 
surface tension, whereas D is a microscopic quantity which is very difficult to measure. 
It is useful because it may be used to predict values of D from p ( p )  and y. As far as 
we are aware there are no other fluids than LJ for which sufficient data exist for a test 
of the generality of the postulate (5.1) to be made. 
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